Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peng-Gang Chen, ${ }^{\text {a }}$ Shan Gao ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{*}$

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.033$
$w R$ factor $=0.097$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Tetraaquabis(3,5-dinitrobenzoato- κ O)nickel(II) tetrahydrate

The Ni atom in the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$-$4 \mathrm{H}_{2} \mathrm{O}$, is covalently bonded to two dinitrobenzoate groups and datively bonded by four water molecules in a trans octahedral geometry; adjacent molecules are linked through the uncoordinated water molecules into a three-dimensional network.

Comment

The title Ni compound, (I) (Fig. 1), is isostructural with $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Tahir et al., 1996), whose metal atom is covalently bonded to two dinitrobenzoate groups and datively bonded by four water molecules in a trans octahedral geometry. In the Ni compound, the metal-bearing molecule and the uncoordinated water molecules engage in hydrogen bonding (Table 2) to furnish a three-dimensional network. Some spectroscopic and TGA measurements for the title compound have been previously reported (Ferenc, 1995; Odunola et al., 1992).

(I)

Experimental

Nickel acetate tetrahydrate ($0.124 \mathrm{~g}, 0.5 \mathrm{mmol}$) and sodium hydroxide $(0.04 \mathrm{~g}, 1 \mathrm{mmol})$ were added to an aqueous solution of $3,5-$ dinitrobenzoic acid ($0.212 \mathrm{~g}, 1 \mathrm{mmol}$). The solution was filtered and set aside for several days, leading to the formation of green prismatic crystals. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NiO}_{20}$: C 26.90 , H 3.55, N 8.96%; found: C 26.85 , H 3.49, N 8.99%.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$V=1217.15(6) \AA^{3}$
$M_{r}=625.07$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
$a=7.1835(2) \AA$	$\mathrm{Mo} K \alpha$ radiation
$b=11.7581(3) \AA$	$\mu=0.90 \mathrm{~mm}^{-1}$
$c=15.0077(4) \AA$	$T=295(2) \mathrm{K}$
$\alpha=103.199(1)^{\circ}$	Prism, green
$\beta=98.267(1)^{\circ}$	$0.36 \times 0.25 \times 0.18 \mathrm{~mm}$
$\gamma=92.672(1)^{\circ}$	

Received 11 September 2006 Accepted 12 September 2006
$4 \mathrm{H}_{2} \mathrm{O}$

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50\% probability level, and H atoms are drawn as spheres of arbitrary radii.

Data collection

Rigaku R-AXIS RAPID IP diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.519, T_{\text {max }}=0.855$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0623 P)^{2}\right. \\
\quad+0.1168 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.67 \mathrm{e}^{-3}
\end{aligned}
$$

12071 measured reflections
5527 independent reflections
4813 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$w R\left(F^{2}\right)=0.097$
$S=1.06$
5527 reflections
416 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ni} 1-\mathrm{O} 1$	$2.022(1)$	$\mathrm{Ni} 1-\mathrm{O} 2 w$	$2.081(1)$
$\mathrm{Ni} 1-\mathrm{O} 7$	$2.017(1)$	$\mathrm{Ni} 1-\mathrm{O} 3 w$	$2.064(1)$
$\mathrm{Ni} 1-\mathrm{O} 1 w$			
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 7$			
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1 w$			
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2 w$	$91.82(5)$	$\mathrm{O} 7-\mathrm{Ni} 1-\mathrm{O} 1 w$	$87.07(5)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 3 w$	$91.28(5)$	$\mathrm{O} 7-\mathrm{Ni} 1-\mathrm{O} 2 w$	$89.89(5)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 4 w$	$87.58(5)$	$\mathrm{O} 7-\mathrm{Ni} 1-\mathrm{O} 3 w$	$93.54(5)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2$	$0.85(1)$	$1.96(1)$	$2.749(2)$	$156(2)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 5 w$	$0.85(1)$	$1.91(1)$	$2.752(2)$	$175(2)$
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 5 w^{\mathrm{i}}$	$0.85(1)$	$1.95(9)$	$2.801(2)$	$177(3)$
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 6 w$	$0.85(1)$	$1.88(1)$	$2.718(2)$	$170(3)$
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 8$	$0.85(1)$	$1.88(1)$	$2.692(2)$	$159(2)$
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 7 w$	$0.85(1)$	$1.96(1)$	$2.806(2)$	$174(2)$
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 7 w^{\text {ii }}$	$0.85(1)$	$1.93(1)$	$2.784(2)$	$175(2)$
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 8 w$	$0.85(1)$	$1.98(1)$	$2.830(2)$	$177(2)$
$\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.84(1)$	$2.14(2)$	$2.894(2)$	$148(3)$
$\mathrm{O} 5 w-\mathrm{H} 5 w 2 \cdots \mathrm{O} 4 w^{\text {iii }}$	$0.84(1)$	$2.18(1)$	$2.967(2)$	$155(2)$
$\mathrm{O} 6 w-\mathrm{H} 6 w 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.84(1)$	$2.04(2)$	$2.786(2)$	$148(2)$
$\mathrm{O} 7 w-\mathrm{H} 7 w 2 \cdots \mathrm{O} 2 w^{\mathrm{iv}}$	$0.84(1)$	$2.23(1)$	$3.004(2)$	$154(2)$
$\mathrm{O} 7 w-\mathrm{H} 7 w 1 \cdots \mathrm{O} 8 w$	$0.84(1)$	$2.18(1)$	$2.999(2)$	$163(2)$
$\mathrm{O} 8 w-\mathrm{H} 8 w 1 \cdots \mathrm{O} 8^{\mathrm{ii}}$	$0.85(1)$	$1.96(1)$	$2.729(2)$	$151(2)$
Symmetry codes:	(i)	$-x,-y+1,-z+1 ;$	(ii)	$-x+1,-y,-z+1 ;$
$-x+1,-y+1,-z+1 ;($ (iv) $)-x,-y,-z+1$.				

The C -bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in a difference Fourier map, and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA; their displacement parameters were freely refined.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); method used to solve structure: atomic coordinates taken from the isostructural Co analog (Tahir et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

We thank Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Ferenc, W. (1995). Croat. Chem. Acta, 68, 383-392.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Odunola, O. A., Woods, J. A. O. \& Patel, K. S. (1992). Synth. React. Inorg. Met. Org. Chem. 22, 941-553.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tahir, M. N., Ülkü, D. \& Mövsümov, E. M. (1996). Acta Cryst. C52, 1392-1394.

