Received 11 September 2006

Accepted 12 September 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peng-Gang Chen,^a Shan Gao^a and Seik Weng Ng^b*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.033 wR factor = 0.097 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraaquabis(3,5-dinitrobenzoato- κO)nickel(II) tetrahydrate

The Ni atom in the title compound, $[Ni(C_7H_3N_2O_6)_2(H_2O)_4]$ -4H₂O, is covalently bonded to two dinitrobenzoate groups and datively bonded by four water molecules in a *trans* octahedral geometry; adjacent molecules are linked through the uncoord-inated water molecules into a three-dimensional network.

Comment

The title Ni compound, (I) (Fig. 1), is isostructural with $[Co(C_7H_3N_2O_6)_2(H_2O)_4]\cdot 4H_2O$ (Tahir *et al.*, 1996), whose metal atom is covalently bonded to two dinitrobenzoate groups and datively bonded by four water molecules in a *trans* octahedral geometry. In the Ni compound, the metal-bearing molecule and the uncoordinated water molecules engage in hydrogen bonding (Table 2) to furnish a three-dimensional network. Some spectroscopic and TGA measurements for the title compound have been previously reported (Ferenc, 1995; Odunola *et al.*, 1992).

·4H₂O

Experimental

Nickel acetate tetrahydrate (0.124 g, 0.5 mmol) and sodium hydroxide (0.04 g, 1 mmol) were added to an aqueous solution of 3,5dinitrobenzoic acid (0.212 g, 1 mmol). The solution was filtered and set aside for several days, leading to the formation of green prismatic crystals. Analysis calculated for $C_{14}H_{22}N_4NiO_{20}$: C 26.90, H 3.55, N 8.96%; found: C 26.85, H 3.49, N 8.99%.

Crystal data V = 1217.15 (6) Å³ $[Ni(C_7H_3N_2O_6)_2(H_2O)_4] \cdot 4H_2O$ $M_r = 625.07$ Z = 2Triclinic, P1 $D_x = 1.706 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation a = 7.1835 (2) Å b = 11.7581 (3) Å $\mu = 0.90 \text{ mm}^{-1}$ T = 295 (2) K c = 15.0077 (4) Å $\alpha = 103.199(1)^{\circ}$ Prism, green $\beta = 98.267 (1)^{\circ}$ $0.36 \times 0.25 \times 0.18 \text{ mm}$ $\gamma = 92.672 \ (1)^{\circ}$

© 2006 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are drawn as spheres of arbitrary radii.

Data collection

Rigaku R-AXIS RAPID IP	12071 measured reflections
diffractometer	5527 independent reflections
ω scans	4813 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.024$
(ABSCOR; Higashi, 1995)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.519, T_{\max} = 0.855$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0623P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.1168P]
$wR(F^2) = 0.097$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5527 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
416 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	2.022 (1)	Ni1 - O2w	2.081 (1)
Ni1-07	2.017 (1)	Ni1-O3w	2.064 (1)
Ni1-O1w	2.063 (1)	Ni1-O4w	2.090 (1)
O1-Ni1-O7	178.43 (5)	O7-Ni1-O1w	87.07 (5)
O1-Ni1-O1w	91.82 (5)	O7-Ni1-O2w	89.89 (5)
O1-Ni1-O2w	91.28 (5)	O7-Ni1-O3w	93.54 (5)
O1-Ni1-O3w	87.58 (5)	O7-Ni1-O4w	89.84 (5)
O1-Ni1-O4w	89.01 (5)		

Table 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1 <i>w</i> −H1 <i>w</i> 1····O2	0.85 (1)	1.96 (1)	2.749 (2)	156 (2)
$O1w - H1w2 \cdots O5w$	0.85(1)	1.91 (1)	2.752 (2)	175 (2)
$O2w - H2w1 \cdots O5w^{i}$	0.85 (1)	1.95 (9)	2.801 (2)	177 (3)
$O2w - H2w2 \cdots O6w$	0.85 (1)	1.88 (1)	2.718 (2)	170 (3)
$O3w - H3w1 \cdots O8$	0.85 (1)	1.88 (1)	2.692 (2)	159 (2)
$O3w - H3w2 \cdots O7w$	0.85 (1)	1.96 (1)	2.806 (2)	174 (2)
$O4w - H4w1 \cdots O7w^{ii}$	0.85 (1)	1.93 (1)	2.784 (2)	175 (2)
$O4w - H4w2 \cdots O8w$	0.85 (1)	1.98 (1)	2.830 (2)	177 (2)
$O5w - H5w1 \cdots O2^{i}$	0.84(1)	2.14 (2)	2.894 (2)	148 (3)
$O5w - H5w2 \cdots O4w^{iii}$	0.84 (1)	2.18 (1)	2.967 (2)	155 (2)
$O6w - H6w1 \cdots O2^{i}$	0.84(1)	2.04(2)	2.786 (2)	148 (2)
$O7w - H7w2 \cdots O2w^{iv}$	0.84 (1)	2.23 (1)	3.004 (2)	154 (2)
$O7w - H7w1 \cdots O8w$	0.84 (1)	2.18 (1)	2.999 (2)	163 (2)
$O8w - H8w1 \cdots O8^{ii}$	0.85 (1)	1.96 (1)	2.729 (2)	151 (2)

-x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 1.

The C-bound H atoms were positioned geometrically (C–H = 0.93 Å) and were included in the refinement in the riding-model approximation, with $U_{\rm iso}$ (H) set to $1.2U_{\rm eq}$ (C). The water H atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H = 0.85 (1) Å; their displacement parameters were freely refined.

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); method used to solve structure: atomic coordinates taken from the isostructural Co analog (Tahir *et al.*, 1996); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97*.

We thank Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Ferenc, W. (1995). Croat. Chem. Acta, 68, 383-392.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Odunola, O. A., Woods, J. A. O. & Patel, K. S. (1992). Synth. React. Inorg. Met. Org. Chem. 22, 941–553.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Tahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392-1394.